Thorlabs保偏混合接头光纤跳线
- 产品型号:
- 更新时间:2023-12-19
- 产品介绍:Thorlabs保偏混合接头光纤跳线的两端均具有高品质的窄键陶瓷接头:一端FC/APC(绿色包层),一端FC/PC(蓝色包层)。这些跳线简化了光纤应用中的端口连接,适用于电信、陀螺仪和光学传感器系统。它们具有高品质的抛光,在FC/PC接头处产生的典型回波损耗为50 dB,在FC/APC接头处产生的典型回波损耗为60 dB。
- 厂商性质:代理商
- 在线留言
产品介绍
品牌 | Thorlabs | 价格区间 | 面议 |
---|---|---|---|
组件类别 | 光学元件 | 应用领域 | 电子 |
Thorlabs保偏混合接头光纤跳线
特性
窄键(2.0 mm)与慢轴对准
典型回波损耗50 dB(FC/PC接头)和60 dB(FC/APC接头)
APC接头上带8°角的陶瓷插芯
Ø3 mm外层保护套
Thorlabs保偏混合接头光纤跳线的两端均具有高品质的窄键陶瓷接头:一端FC/APC(绿色包层),一端FC/PC(蓝色包层)。这些跳线简化了光纤应用中的端口连接,适用于电信、陀螺仪和光学传感器系统。它们具有高品质的抛光,在FC/PC接头处产生的典型回波损耗为50 dB,在FC/APC接头处产生的典型回波损耗为60 dB。偏振消光比(PER)是一种衡量保偏(PM)光纤或器件防止光纤不同偏振轴之间交叉耦合程度的量度。每根跳线都在厂内组装,并经过多种测试,以验证其在光纤连接处具有高消光比和低插入损耗。每根跳线都包含一个数据表,上面总结了测试结果(点击这里查看样品数据表)。
每根跳线都带有两个罩在终端的保护帽,防止灰尘或其它污染物落入插芯端面。我们也单独出售保护FC/PC和FC/APC终端的CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。我们也提供匹配套管,连接FC到FC及FC到SMA接头。这些匹配套管能够*地减少背向反射,实现纤芯之间的良好对准。
如需定制跳线,请点击这里。诸如本页出售的等保偏光纤可以具有不同的长度和护套。更多信息,请联系技术支持。
PM Fiber Patch Cable Selection Guide |
FC/PC to FC/PC |
FC/APC to FC/APC |
FC/PC to FC/APC Hybrid |
AR-Coated FC/PC and Hybrid |
HR-Coated FC/PC and FC/APC |
规格:
Item Prefix | P5-405BPM-FC | P5-488PM-FC | P5-630PM-FC | P5-780PM-FC | P5-980PM-FC |
Test Wavelength | 405 nm | 488 nm | 630 nm | 780 nm | 980 nm |
Operating Wavelength | 400 - 680 nm | 460 - 700 nm | 620 - 850 nm | 770 - 1100 nm | 970 - 1550 nm |
Fiber Type | PM-S405-XP(PANDA) | PM460-HP(PANDA) | PM630-HP(PANDA) | PM780-HP(PANDA) | PM980-XP(PANDA) |
Max Insertion Lossa | 1.5 dB | 1.5 dB | 1.2 dB | 1.0 dB | 0.7 dB |
Min Extinction Ratioa | 15 dB | 18 dB | 20 dB | 20 dB | 22 dB |
Mode Field Diameterb | 3.6 ± 0.5 µm @ 405 nm | 3.4 ± 0.5 µm @ 488 nm | 4.2 ± 0.5 µm @ 630 nm | 4.9 µm @ 780 nm5.3 ± 1.0 µm @ 850 nm | 6.6 ± 0.5 µm @ 980 nm |
Numerical Aperturec | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
Optical Return | 50 dB (Typical) @ FC/PC Connector60 dB (Typical) @ FC/APC Connector | ||||
Connector Type | 1 FC/PC, 1 FC/APC | ||||
Key Width | 2.00 mm ± 0.02 mm | ||||
Key Alignment Type | Narrow Key Aligned to Slow Axis or as Specified | ||||
Fiber Length | 1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -5 | ||||
Jacket Type | FT030-BLUE | ||||
Operating Temperature | 0 to 70 °C | ||||
Storage Temperature | -45 to 85 °C |
在测试波长下测量。
模场直径(MFD)是标准值。近场1/e2功率处的直径。
数值孔径 (NA)为标准值。
回波损耗针对无端接的接头定义。例如,如果您的光源连接到FC/PC端,则回波损耗为FC/APC端的测量值,即60dB。
Item Prefix | P5-1064PM-FC | P5-1310PM-FC | P5-1550PM-FC | P5-2000PM-FC |
Test Wavelength | 1064 nm | 1310 nm | 1550 nm | 2000 nm |
Operating Wavelength | 970 - 1550 nm | 1270 - 1625 nm | 1440 - 1625 nm | 1850 - 2200 nm |
Fiber Type | PM980-XP(PANDA) | PM1300-XP(PANDA) | PM1550-XP(PANDA) | PM2000(PANDA) |
Max Insertion Lossa | 0.7 dB | 0.5 dB | 0.5 dB | 0.5 dB |
Min Extinction Ratioa | 22 dB | 23 dB | 23 dB | 23 dB |
Mode Field Diameterb | 7.7 μm @ 1064 nm | 9.3 ± 0.5 µm @ 1300 nm | 10.1 ± 0.4 µm @ 1550 nm | 8.6 µm @ 2000 nm |
Numerical Aperturec | 0.12 | 0.12 | 0.125 | 0.20 |
Optical Return Lossa,d | 50 dB (Typical) @ FC/PC Connector60 dB (Typical) @ FC/APC Connector | |||
Connector Type | 1 FC/PC, 1 FC/APC | |||
Key Width | 2.00 mm ± 0.02 mm | |||
Key Alignment Type | Narrow Key Aligned to Slow Axis or as Specified | |||
Fiber Length | 1.0 +0.075/-0 m for Item Numbers Ending in -12.0 +0.075/-0 m for Item Numbers Ending in -25.0 +0.075/-0 m for Item Numbers Ending in -5 | |||
Jacket Type | FT030-BLUE | |||
Operating Temperature | 0 to 70 °C | |||
Storage Temperature | -45 to 85 °C |
在测试波长下测量。
模场直径(MFD)是标准值。近场1/e2功率处的直径。
数值孔径(NA)为标准值。
回波损耗针对无端接的接头定义。例如,如果您的光源连接到FC/PC端,则回波损耗为FC/APC端的测量值,即60dB。
计算单模光纤和多模光纤的有效面积
单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。
例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是Ø3 µm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为Ø10.5 µm。则两种光纤的有效面积可以根据下面来计算:
SM400 Fiber:Area= Pi x (MFD/2)2= Pi x (1.5µm)2= 7.07 µm2= 7.07 x 10-8cm2
SMF-28 Ultra Fiber:Area = Pi x (MFD/2)2= Pi x (5.25 µm)2= 86.6 µm2= 8.66 x 10-7cm2
为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:
SM400 Fiber:7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值)
7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)
SMF-28 UltraFiber:8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)
8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)
多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得z佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。
Estimated Optical Power Densities on Air / Glass Interfacea | ||
Type | Theoretical Damage Thresholdb | Practical Safe Levelc |
CW(Average Power) | ~1 MW/cm2 | ~250 kW/cm2 |
10 ns Pulsed(Peak Power) | ~5 GW/cm2 | ~1 GW/cm2 |
所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。
这是可以入射到光纤端面且没有损伤风险的z大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。
这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。
插芯/接头终端相关的损伤机制
有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。
与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。
为了*地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。
曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。z大功率适用性受到所有相关损伤机制的z低功率水平限制(由实线表示)。
光纤内的损伤阈值
除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。
弯曲损耗
光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。
有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而z大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。
光暗化
光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。
即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。
制备和处理光纤
通用清洁和操作指南
建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。
安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。
光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。
如果将光纤熔接到光学系统,用户先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。
对准系统和优化耦合时,用户应该使用低功率;这样可以*地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。
高功率下使用光纤的注意事项
一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。
要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤
使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。
连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。
由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。
用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。
阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。
保偏光纤跳线,405 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-405BPM-FC-2 | PM-S405-XP | 400 - 680 nm | 380 ± 20 nm | 15 dB | 1.5 dB | 3.6 ± 0.5 µm @ 405 nm | FT030-BLUE | 2 m |
在405 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-405BPM-FC-2 | 光纤跳线,保偏,FC/PCFC/APC,405纳米,熊猫型,2米 |
保偏光纤跳线,488 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-488PM-FC-2 | PM460-HP | 460 - 700 nm | 420 ± 30 nm | 18 dB | 1.5 dB | 3.4 µm @ 488 nm | FT030-BLUE | 2 m |
在488 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-488PM-FC-2 | 光纤跳线,保偏,FC/PCFC/APC,488纳米,熊猫型,2米 |
保偏光纤跳线,630 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-630PM-FC-2 | PM630-HP | 620 - 850 nm | 570 ± 50 nm | 20 dB | 1.2 dB | 4.2 µm @ 630 nm | FT030-BLUE | 2 m |
在630 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-630PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,630纳米,熊猫型,2米 |
保偏光纤跳线,780 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-780PM-FC-1 | PM780-HP | 770 - 1100 nm | 710 ± 60 nm | 20 dB | 1.0 dB | 5.3 ± 1.0 µm @ 850 nm | FT030-BLUE (Ø3 mm) | 1m |
P5-780PM-FC-2 | 4.9 µm @ 780 nm | 2m | ||||||
P5-780PM-FC-5 | 4.9 µm @ 780 nm | 5m |
在780 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-780PM-FC-1 | NEW!光纤跳线,PM,FC/PCFC/APC,780纳米,熊猫型,1米 |
P5-780PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,780纳米,熊猫型,2米 |
P5-780PM-FC-5 | 光纤跳线,PM,FC/PCFC/APC,780纳米,熊猫型,5米 |
保偏光纤跳线,980 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-980PM-FC-2 | PM980-XP | 970 - 1550 nm | 920 ± 50 nm | 22 dB | 0.7 dB | 6.6 ± 0.5 µm @ 980 nm | FT030-BLUE | 2 m |
在980 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-980PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,980纳米,熊猫型,2米 |
保偏光纤跳线,1064 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-1064PM-FC-2 | PM980-XP | 970 - 1550 nm | 920 ± 50 nm | 22 dB | 0.7 dB | 7.7 µm @ 1064 nm | FT030-BLUE | 2 m |
在1064 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-1064PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,1064纳米,熊猫型,2米 |
保偏光纤跳线,1310 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-1310PM-FC-2 | PM1300-XP | 1270 - 1625 nm | 1210 ± 60 nm | 23 dB | 0.5 dB | 9.3 ± 0.5 µm @ 1300 nm | FT030-BLUE | 2 m |
在1310 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-1310PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,1310纳米,熊猫型,2米 |
保偏光纤跳线,1550 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-1550PM-FC-1 | PM1550-XP | 1440 - 1625 nm | 1380 ± 60 nm | 23 dB | 0.5 dB | 10.1 | FT030-BLUE | 1m |
P5-1550PM-FC-2 | 2m | |||||||
P5-1550PM-FC-5 | 3m |
在1550 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-1550PM-FC-1 | NEW!光纤跳线,PM,FC/PCFC/APC,1550纳米,熊猫型,1米 |
P5-1550PM-FC-2 | 光纤跳线,PM,FC/PCFC/APC,1550纳米,熊猫型,2米 |
P5-1550PM-FC-5 | 光纤跳线,对齐慢轴的PM,FC/PCFC/APC,1550纳米,熊猫型,5米 |
保偏光纤跳线,2000 nm,FC/APC到FC/PC:熊猫型
Item # | Fiber Type | Operating Wavelength | Cutoff Wavelength | Min ExtinctionRatioa | Max InsertionLossa | MFDb | Jacket | Length |
P5-2000PM-FC-2 | PM2000 | 1850 - 2200 nm | 1720 ± 80 nm | 23 dB | 0.5 dB | 8.6 µm @ 2000 nm | FT030-BLUE | 2 m |
在2000 nm的测试波长下测得
模斑直径(MFD)是标准值。近场1/e2功率处的直径。
产品型号 | 公英制通用 |
P5-2000PM-FC-2 | 光纤跳线,保偏,FC/PCFC/APC,2000纳米,熊猫型,2米 |
- 下一篇:Thorlabs光纤跳线定制